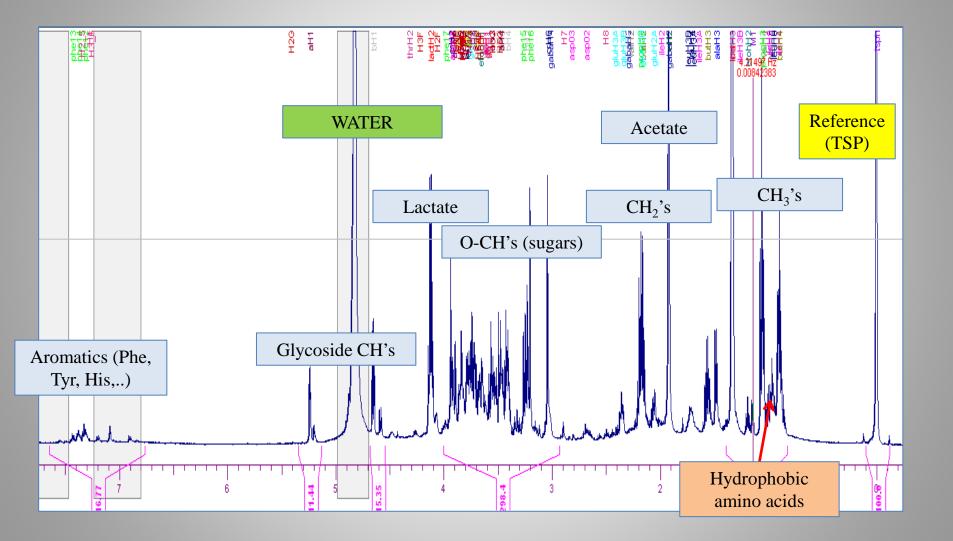
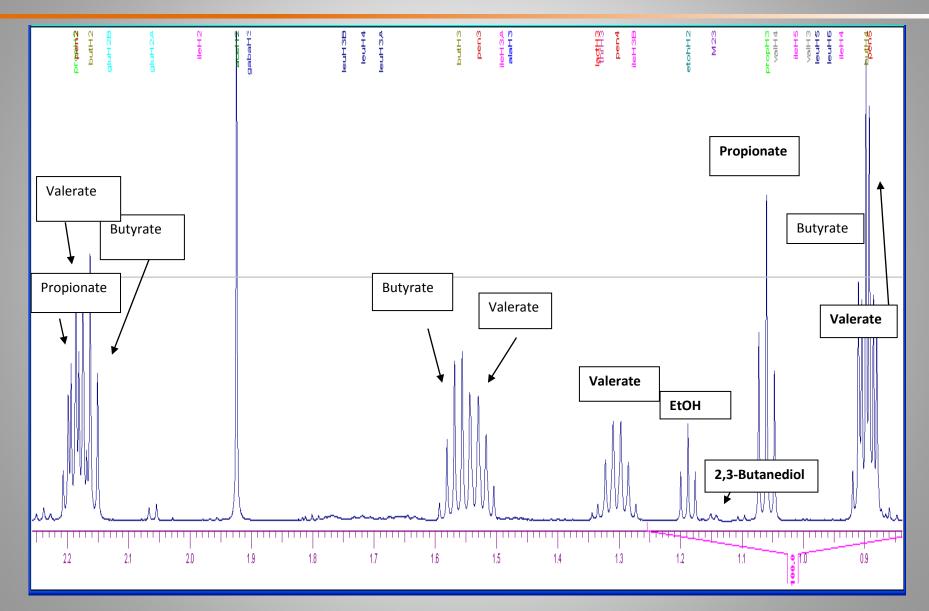
QUANTITATIVE NMR IN PROFILING OF BIOREFINERY PRODUCTS

Reino Laatikainen, Department of Pharmacy, UEF, Kuopio, Finland

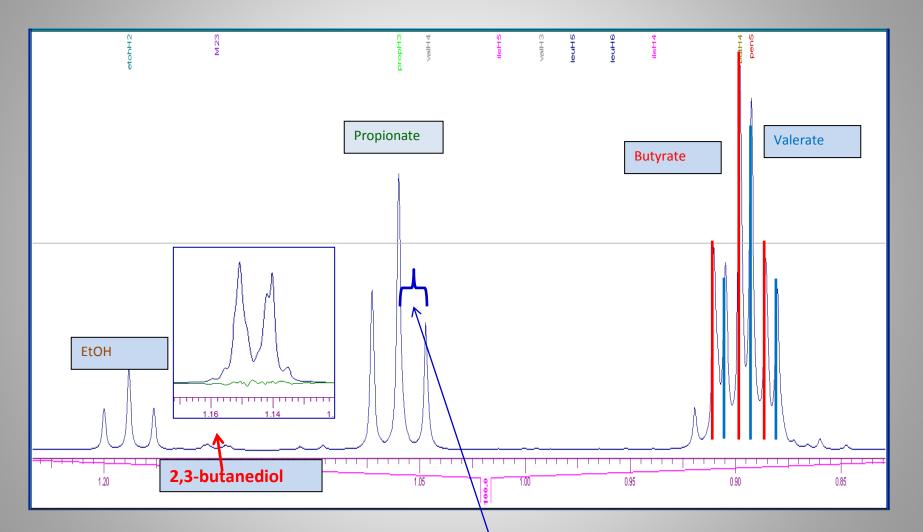
NMR METABONOMICS LABORATORY (MLAB) HIGH-THROUGHPUT NMR METABONOMICS


- Sample into magnet
- Heat sample to +37°C
- Tune & Homogenise magnetic field
- Measure data
- Analyze data
- Make conclusions

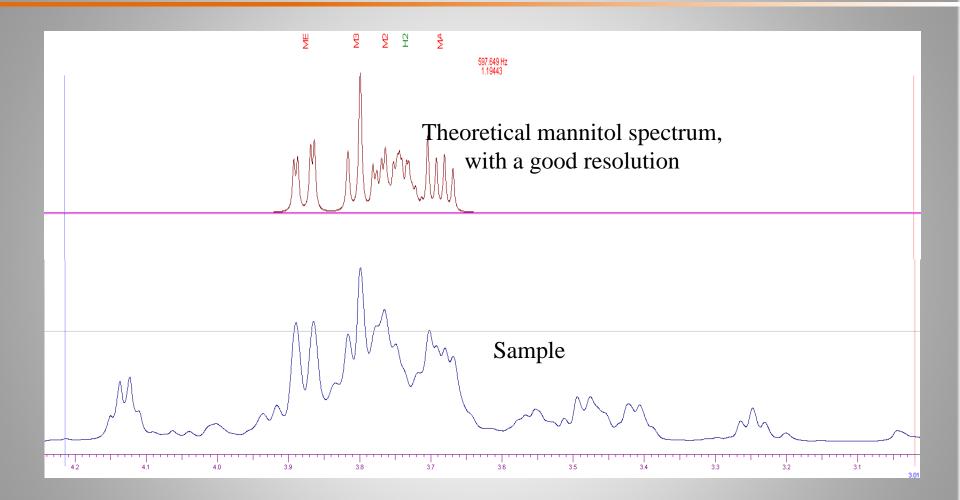
High-Throughput Serum NMR Metabonomics Pasi Soininen


QMTLS (Quantum Mechanical Total-Line-Shape) Analysis User interface of program qQMTLS

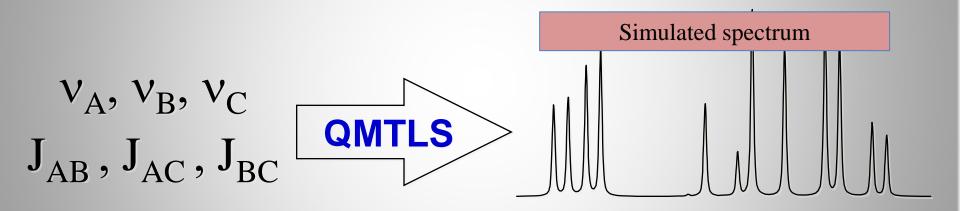
gQMTLS - The NMR Freev	ware for qQMSA							
			c:	perchdata\elias\feb14\HK_A	1.PMS			
EXIT (ESC) VIEW(V)	ZOOM(Space) 100% (VV)	<< > <	<> >>	2X X/2	HZ/PPM HELP (H)	SLICE	B.	ARTLETT =10.00
Edit, Read, Write(F2)	Prepare(F3)	Set profile(S)	Select(G)	Local System(*G)	InterChange	Equalize	Integrate(A)	Broadening(F11)
J-TABLE(Tab)	Populations(P)	DELI(F4)	ASL search(^A)	Overlay(^O)	Add lines+fit(4NS)	Add line(INS)	Rem line(DEL & ^DEL)	Weight range(^VV)
Simulate(F8)	QMTLS(^F8)	CTLS(shft-F8)	Regression(*R)	AutoFit(^F9)	Ignore range(U)	Lock & Fix(^L)	Shift structure(alt-S)	MM & PRED(^F3)
				Addrit(10)	Ignore range(0)	LOCK & TIX(L)		
lactate 20.305 [] acetate 27.051 [] ala 2.521 [] valine 0.5355 [] leu 1.566 [] ile 1.503 [] etoh 1.487 [] ptopio 7.144 [] glu 4.690 [] beta 7.828 [] alfa 4.234 [] gly 0.5755 [] thr 1.258 []	0.296] sucrose 1.60 -0.012] tsp 6.10 -0.0142] Total 100.00 -0.026] Structure areas -0.031] -0.039] Calculated/obsc -0.156] Spectrum/obsd -0.030] OM species/Spec -0.029] Complexes/Spec -0.030] 0.003] MS-fit 0.1 -0.087] Nax. shift-chan -0.0545] Regression mode 0.019] -0.0751] 0.0000]	06 [-0.0144] 01 [-0.026] 04 [0.060] 00 [0.0750] 4 a 0.32097E+04 4 105.63% a 40.39% 65.24% 5 100.00% 0.00% 1297% nge 1.333HZ						
Side 3 of 18 Office Theme*		H20	16.15 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		Hite			
	🧑 🕼 🔄 🐣 🦹 🎦 C:\PERCHI	DATA\ELI	. 🥢 ADDER - Compag Vis	. 🚱 ABOWE_2014.pptx	k PERCH - [c:\\elias 🛛 🗐 IC	DUT_HSP3_SIMI.do		
			www.compaq.vis		To the second	Citoluc	al dours - me	


NMR Spectrum (at 600 MHz) of an ABOWE sample

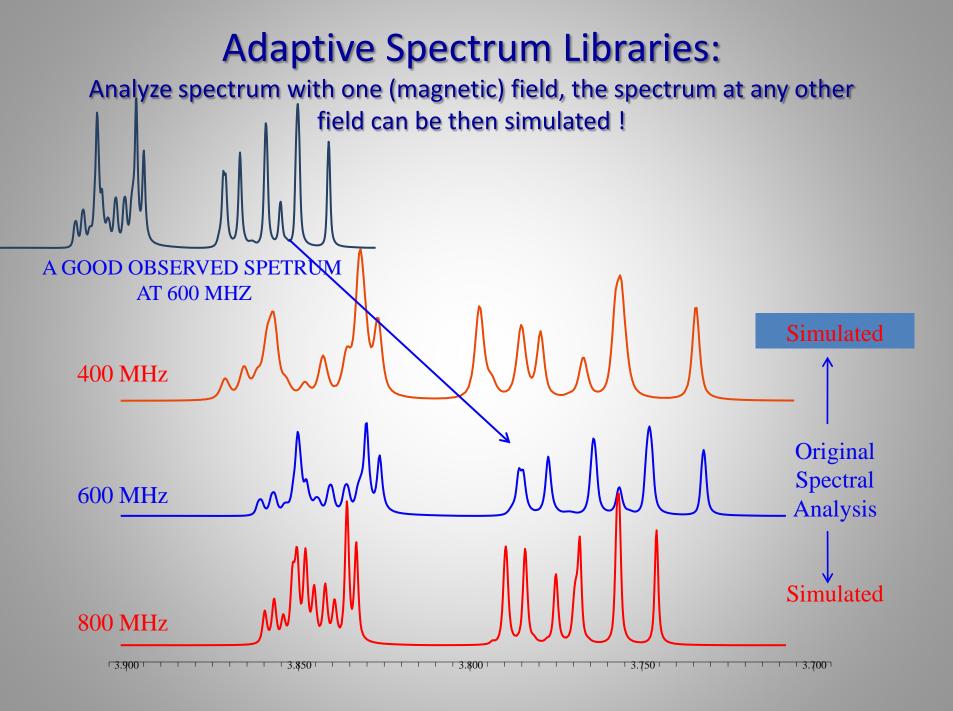
Aliphatic Region



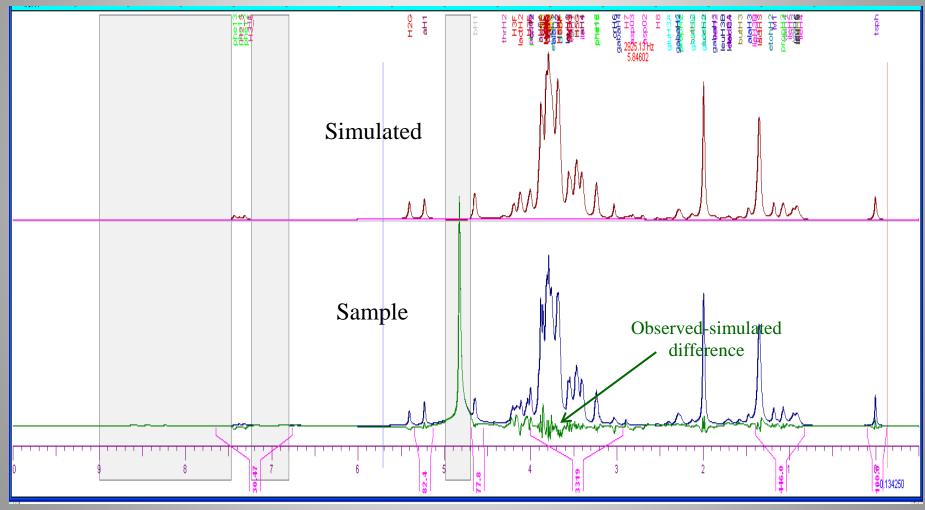
2,3-Butanediol has a unique signal


A compound can be identified also from splittings (coupling constants) of multiplets: couplings do not depend on instrument or sample

Detection of mannitol


Spiking is sometimes used to ensure identification a component in complex samples

If chemical shifts, coupling constants & line-shape are given, spectrum (even the smallest details) can be simulated quantum mechanically !

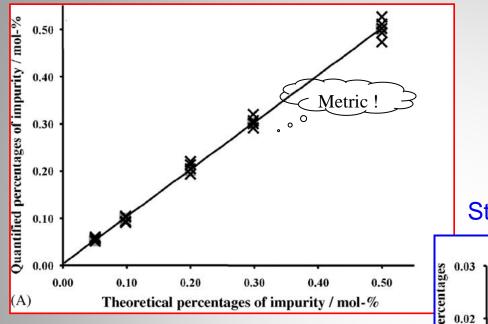


=> Model spectra (for quantitative analysis)

A problem: line-widths and chemical shifts (less) depend on sample, which means that a sophisticated software is needed for accurate quantification, ...a simple regression analysis does not work.

Quantitative QMSA of an ABOWE sample using 23 metabolites:

Sometimes spectral lines are broadened by Fe & Mn-ions, like above.

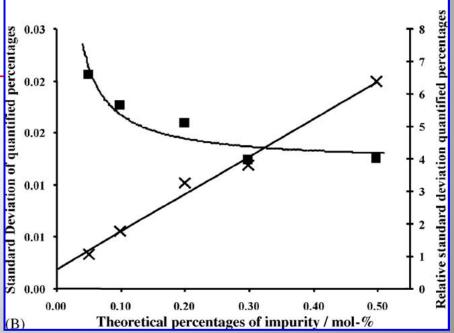

REPORT

&QM N.	&QM NAME N PROTONS I			POPULATION	MOL%	mMOL I	Weight(mg/ml)
%Q	lactate	1	4	0.9004E+01	9.0918	86.3675	7.7731
%Q	acetate	2	3	0.1680E+02	16.9621	161.1321	9.6679
%Q	ala	3	4	0.6009E+01	6.0681	57.6442	5.1303
%Q	valine	4	8	0.2383E+01	2.4059	22.8546	2.5140
%Q	leu	5	10	0.2505E+01	2.5291	24.0256	3.1474
۶Q	ile	6	10	0.1930E+01	1.9491	18.5155	2.4255
۶Q	etoh	7	5	0.7797E+01	7.8735	74.7941	3.4405
۶Q	butyrate	8	7	0.7870E+00	0.7947	7.5494	0.6643
۶Q	propio	9	5	0.1874E+01	1.8922	17.9750	1.3661
۶Q	glu	10	5	0.9932E-02	0.0100	0.0953	0.0141
%Q	beta	11	7	0.8427E+01	8.5091	80.8322	14.5498
%Q	alfa	12	7	0.5282E+01	5.3338	50.6687	9.1204
۶Q	gly	13	2	0.1311E+01	1.3236	12.5734	0.9430
۶Q	thr	14	5	0.9269E+00	0.9360	8.8912	1.0581
۶Q	phe	15	8	0.1850E+01	1.8678	17.7434	2.6793
۶Q	3pheprop	16	9	0.2500E+00	0.2524	2.3980	0.3597
۶Q	creatine	17	5	0.1144E+01	1.1552	10.9735	0.9766
۶Q	gaba	18	6	0.9932E-02	0.0100	0.0953	0.0098
۶Q	asp	19	3	0.1473E+01	1.4870	14.1258	1.8787
%Q	mannitol	20	8	0.9783E+01	9.8790	93.8454	17.0799
%Q	23bud	21	8	0.1504E+02	15.1904	144.3013	12.9871
%Q	sucrose	22	14	0.4436E+01	4.4791	42.5497	16.0838
۶Q	tsp	23	9	0.9685E+00	0.9779	9.2900	1.3573
TOT	TOTAL(excl. reference) = 99.0315 100.0000 949.9510 <u>113.8694</u>						113.8694

QMTLS - APPLICATIONS

- Up to 100 metabolites in one sample?
- Dynamic range of 0.01-100 mol%
- Concentrations > 0.01-M
- Applications:
 - Any mixtures and impurity analysis
 - Biofluids: plasma, CSF, lipid extracts of serum, urine,
 - Bioextracts, juices, ...

Linearity & confidence limits



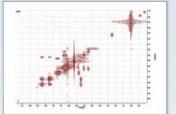
Calculated vs. real impurity concentrations (in mol%) $R^2 = 0.995$

NO CALIBRATION NEEDED !!

Standard deviation vs. mol%

%

CONS & PROS


- + Sample preparation, .. just filter and add reference
- + No calibration
- + Semiquantitative analysis of sample at one glance
- + Chemical confidence (identification of components directly from spectrum),...also carbohydrates (not with MS)
- + ASL (Adaptive Spectrum Libraries)
- + Almost automatical analysis
- Some expertise needed
- Not very sensitive, sample size > 0.3 ml
- Instrumentation (ca. 20€/sample, depends on n), ..liquid Helium and Nitrogen

NEW GENERATION OF NMR INSTRUMENTS *No liquid He or N*₂ !!

400

-

Model	Magnetic Field (MHz)	Bore size (mm)	5 Gauss (mm) Axial/Radial	Uniformity (PPM) ¹	Magnet Height (mm)	Magnet Width (mm)
MR 4T7-54	200	54	<100/50	<1	400	360
MR 9T4-54	400	54	<200/100	<1	600	600
MR 18T8-542	800	54	<2000/2000	<1	800	800

200 MHz!

¹ Bare magnet uniformity, no electrical shims ² Under development

- (800)*

*800 MHz not available, ..yet

hts-110.com

A SCOTT Division

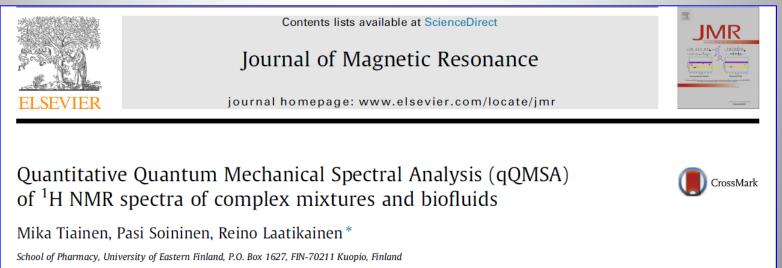
COCLUSIONS and answers to questions presented after speech

Is ON-LINE possible with NMR?

- In principle, yes, in fact NMR could allow automatic follow-up of the process once in a few minutes.
- Unfortunately, not yet feasible with the presently available instruments, ..but probably in near future with the new instruments (previous slide).

Are the new low field (40-100 MHz) instruments useful?

 Not for the <u>water solutions</u>! The minimum useful field is probably 200-400 MHz and demands far better water suppression and sensitivity than in the new < 100 MHz instruments.


RECOMMENDATION:

- NMR is invaluable in checking composition and detecting metabolites (especially sugars) of fermentation products, whenever starting materials or protocols are changed.
- NMR suits perfectly to calibration of methods like GC and HPLC; it is not necessary to prepare the calibration samples containing accurate known concentrations of metabolites (which may be unavailable).

OMSA PROJECT

- <u>UEF</u>: Prof. Reino Laatikainen, PhD Pasi Soininen, PhD Mika Tiainen & PhD Tuulia Tynkkynen
- Univ. of Jyväskylä: BSc Pekka Laatikainen & BSc Henri Martonen
- See also JMR 242 (2014),67-78:

