abswe

Implementing Advanced Concepts for Biological Utilization of Waste

Part-financed by the European Union (European Regional Development Fund and European Neighbourhood and Partnership Instrument)

BIOMASS POTENTIAL AND CHALLENGES ITS UTILIZATION IN NORTH EUROPE AND GLOBALLY

Abowe biorefinery final seminar, biorefining around the Baltic Sea and Global Ecodevelopment

Viikki Campus, University of Helsinki Thursday 30.10.

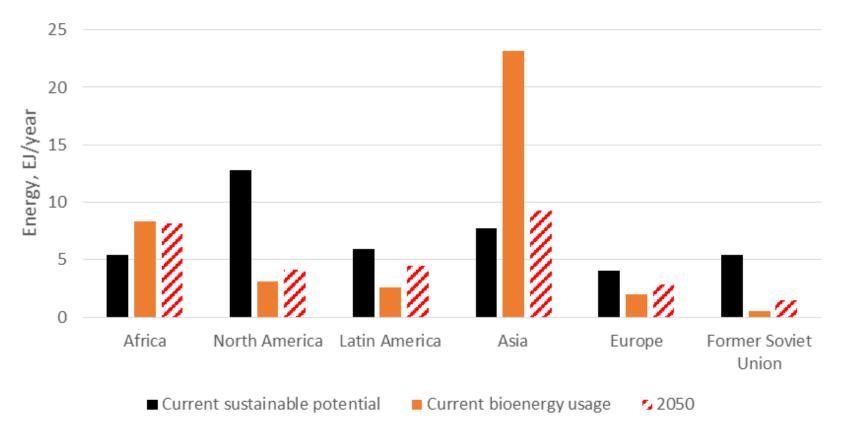
M.Sc. Tuomas Huopana, University of Eastern Finland, tuomas.huopana@uef.fi

CONTENTS

- Introduction
- Global biomass energy potentials
 - Forest biomass
 - Agro biomass
- Abowe project target countries
 - Selected waste potentials in Abowe countries
 - Biodegradable waste utilization
 - Example of utilization of household biowaste
- Biomass Atlas, Finland
- Outlook for biomass potential utilization

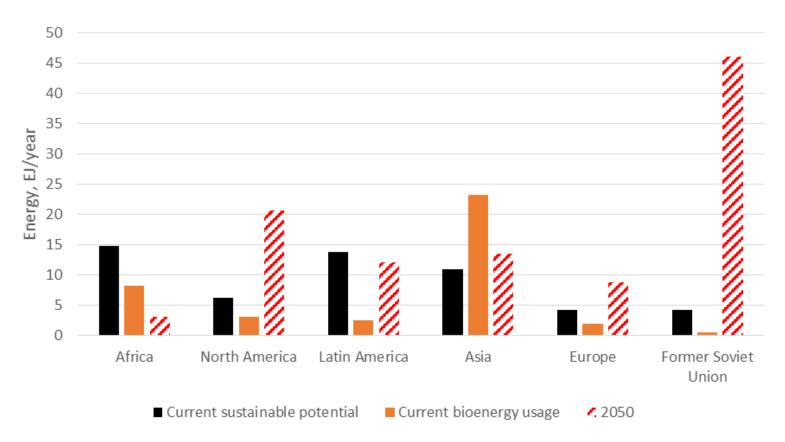
INTRODUCTION

- Global biomass potential is huge and its usage will increase dramatically in becoming years
- World population in 2014 was 7.2 billion and is expected to increase close to 10 billion by 2050
- Global warming
- Non food and waste biomass utilization is seeing as one of the solutions for global challenges
- How much of this non food biomass could be utilized in sustainability point of view?


GLOBAL BIOMASS ENERGY POTENTIAL

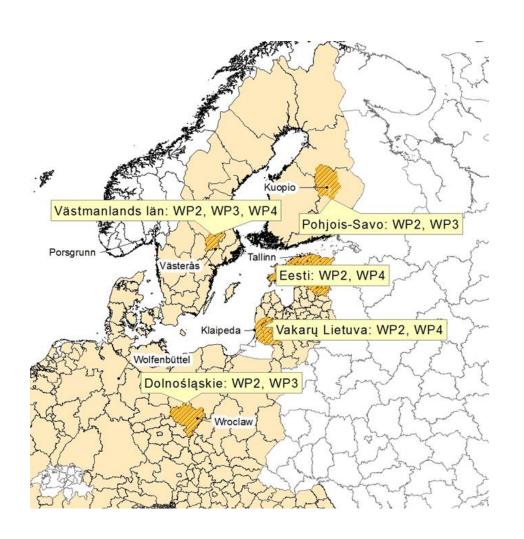
- It was estimated that current sustainable global bioenergy potential is 104 EJ/year. [1]
 - o 72 000 times annual energy consumption in Finland.
 - o 1 EJ = 278 000 TWh.
 - Bioenergy usage is still 38 % of sustainable energy potential.
 - Current average global energy consumption is about 490EJ/year.
- Global scenarios predict bioenergy potential from 120 EJ/year to 210 EJ/year By 2050 [2].

FOREST BIOMASS POTENTIAL & USAGE

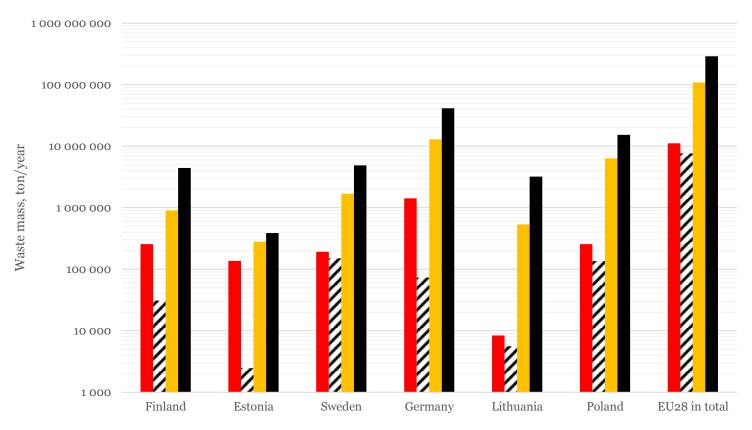

- Current global sustainable forest biomass energy potential is about 42 EJ/year.
- It is predicted that global forest biomass potential can be 30 EJ/year by 2050.

Current sustainable potential & usage: Matti Parikka. Global biomass fuel resources. Biomass & Bioenergy. 2050: VTT Energy Visions 2050.

AGRO BIOMASS POTENTIAL & USAGE



- Current global sustainable agro biomass potential is about 54 EJ/year.
- It is predicted that global agro biomass potential can be 104 EJ/year by 2050.

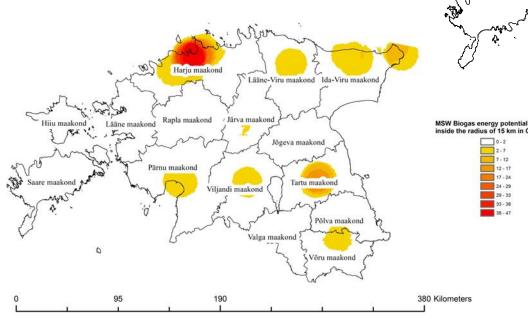

ABOWE PROJECT TARGET COUNTRIES

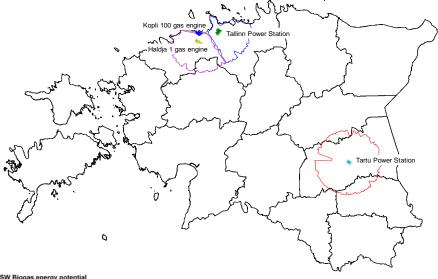
SELECTED WASTE POTENTIALS IN ABOWE COUNTRIES IN 2010

- Industrial effluent sludges
- ☐ Sludges and liquid wastes from waste treatment
- Animal and vegetal wastes (subtotal, Wo91+Wo92+Wo93)
- Mixed ordinary wastes (subtotal, W101+W102+W103)

BIODEGRADABLE WASTE UTILIZATION

- Waste properties for utilization
- Regulations that have effect on waste utilization consider:
 - Waste management
 - Environment protection
 - Sustainability
 - Finance policy
- How much waste can actually be utilized?


EXAMPLE, UTILIZATION OF HOUSEHOLD BIOWASTE (1)


Case: Estonia

Operational income is to be positive

Biowaste spatially distributed of 39 kt/year

Biomethane potential:35 GWh/year

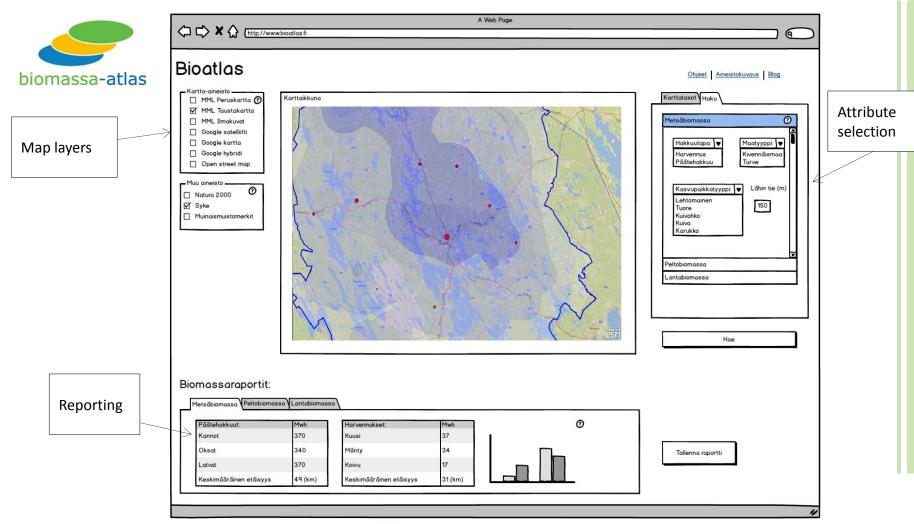
Could be utilized: 19 kt/year

Electricity: 6 GWh/year

Heat: 6.5 GWh/year

EXAMPLE, UTILIZATION OF HOUSEHOLD BIOWASTE (2)

Case: Estonia


Closest heating plant	Tallinn Power Station	Tartu Power Station	Haldja 1 gas engine	Kopli 100 gas engine
Household biowaste, kt/year	5.7	4.1	6.3	3.2
Nitrogen potential, t/year	37	27	41	21
Phosphorus potential, t/year	7.5	5.4	8.3	4.2
Reactor volume, m ³	320	233	353	179
Sales:				
Electricity, GWh/year	1.8	1.3	2.0	1.0
Heat, GWh/year	1.9	1.4	2.1	1.1
Nitrogen fertilizer, k€/year	12,1	8.8	13,4	6.8
Electricity sales, k€/year	210	150	230	120
Heat sales, k€/year	110	80	120	60
Gate fees, k€/year	8.5	6.2	9.4	4.8
Incomes in total, k€/year	340	240	370	190
Overall costs, k€/year (inc. Operational &				
investment)	150	120	170	80
Digestate spread & transportation, k€/year	3.6	1.9	4.8	3.0
Feedstock transportation, k€/year	49	46	61	15
Plant costs, k€/year	97	75	105	61
Operational income, k€/year	190	120	200	110
Labor demands (160 hour/month)				
Plant site, man months/year	6.4	5.1	6.9	4.2
Feedstock transportations, man months/year	32	31	40	10
Digestate spread & transportation, man				
months/year	0.4	0.2	0.6	0.4
Labor demands in total, man months/year	39	36	48	15
Labor demands in total, in men	3	3	4	1
Saved GHG emissions in ETS, CO ₂ t	1 000	700	1 100	600

BIOMASS ATLAS, FINLAND

OUTLOOK FOR BIOMASS POTENTIAL UTILIZATION

- Trends in biomass potential utilization:
 - Land use change from forest to agriculture
 - Due to climate change some regions cannot be suitable for agriculture
 - Accumulation of pollutants to air, water and biomass
- Need for biomass information tools:
 - End user friendly tools to estimate biomass potentials
 - Better quality data
 - Thanks to inspire directive, biomass data related information applications are increasing

Thanks for your attention!

